一本大道在线直播

      1. <center id="uoqrp"><small id="uoqrp"></small></center>
          <th id="uoqrp"><sup id="uoqrp"></sup></th>
          1. <object id="uoqrp"><sup id="uoqrp"><sub id="uoqrp"></sub></sup></object><object id="uoqrp"></object>

            <center id="uoqrp"><em id="uoqrp"></em></center>
            • go to Yann LeCun's profile page
            • go to Robert E Kahn's profile page
            • go to Kristen Nygaard 's profile page
            • go to Marvin Minsky 's profile page
            • go to John E Hopcroft's profile page
            • go to Yoshua Bengio's profile page
            • go to Richard W. Hamming's profile page
            • go to John L Hennessy's profile page
            • go to Frances Allen's profile page
            • go to Alan Kay's profile page
            • go to Ivan Sutherland's profile page
            • go to A J Milner 's profile page
            • go to Peter Naur's profile page
            • go to William Kahan's profile page
            • go to Sir Tim Berners-Lee's profile page
            • go to Joseph Sifakis's profile page
            • go to J. H. Wilkinson 's profile page
            • go to Robert W. Floyd's profile page
            • go to Ronald L Rivest's profile page
            • go to Michael O. Rabin 's profile page
            • go to Stephen A Cook's profile page
            • go to Geoffrey E Hinton's profile page
            • go to Leslie Lamport's profile page
            • go to Pat Hanrahan's profile page
            A.M. TURING AWARD WINNERS BY...

            Juris Hartmanis DL Author Profile link

            United States – 1993
            Short Annotated Bibliography

            Hartmanis has published four books and over 140 research papers.

            Items 1-4 are his books, 5 and 6 are the famous papers mentioned in the essay, and the rest are examples of the collaboration between Hartmanis, Stearns and Lewis. The last item is the famous paper containing the Berman–Hartmanis conjecture.

            1. Hartmanis, J., and R. E. Stearns, Algebraic Structure Theory of Sequential Machines Prentice-Hall, 1966.
            2. Hartmanis, J., Feasible Computations and Provable Complexity Properties. Society for Industrial & Applied Mathematics, Philadelphia, Pennsylvania, 1978.
            3. Hartmanis, J. (editor), Computational Complexity Theory. AMS Proceedings of Symposia in Applied Mathematics, Vol. 38, American Mathematical Society, Providence, Rhode Island, 1989.
            4. Hartmanis, J., and H. Lin (editors), Computing the Future: A Broader Agenda for Computer Science and Engineering, A report of the National Research Council Study chaired by J. Hartmanis. National Academy Press, Washington, D. C., 1992.
            5. Hartmanis, J. and R. E. Stearns, “Computational Complexity of Recursive Sequences,” Proceedings of the 5th Annual Symposium on Switching Circuit Theory and Logical Design, IEEE, New York (1964), pp. 82-90.
            6. Hartmanis, J. and R. E. Stearns, “On the Computational Complexity of Algorithms,” Transactions of the American Mathematical Society, Vol. 117, Issue 5 (May 1965), pp. 285-306.
            7. Hartmanis, J., P. M. Lewis and R. E. Stearns, “Classification of Computations by Time and Memory Requirements,” Proceedings of IFIP Congress 1965, Vol. 1, Spartan Books, Washington, D.C. (1965), pp. 31-35.
            8. Hartmanis, J., P. M. Lewis and R. E. Stearns, “Hierarchies of Memory Limited Computations,” Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design, IEEE, New York (1965), pp. 179-190.
            9. Hartmanis, J., P. M. Lewis and R. E. Stearns, “Memory Bounds for Recognition of Context-Free and Context-Sensitive Languages,” Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design, IEEE, New York (1965), pp. 191-202.
            10. Berman, L. and J. Hartmanis, "On isomorphisms and density of NP and other complete sets,” SIAM Journal on Computing, Vol. 6, Num 2, (1977), pp. 305–322.
            一本大道在线直播

                1. <center id="uoqrp"><small id="uoqrp"></small></center>
                    <th id="uoqrp"><sup id="uoqrp"></sup></th>
                    1. <object id="uoqrp"><sup id="uoqrp"><sub id="uoqrp"></sub></sup></object><object id="uoqrp"></object>

                      <center id="uoqrp"><em id="uoqrp"></em></center>